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Abstract

What is the relationship between domestic competition policy and international trade pol-
icy in the presence of vertical specialization? Should the government liberalize entry in its
domestic final-good market in order to enhance an effect of liberalization in input trade? To
address these questions, we develop a vertical oligopoly model in which the relative thickness
of upstream and downstream markets plays a key role in welfare evaluations. In our model, a
Home government imposes tariffs on imported input from Foreign upstream firms, and simul-
taneously restricts entry of Home downstream firms. Since Home and Foreign countries are
vertically interdependent in this setting, trade policy has a crucial impact not only on Foreign
firms, but also on Home firms through “firm-colocation” effects. We find that, in the short-run
equilibrium, the optimal tariff is higher, the thicker is the Home final-good market (relative to
Foreign input market). In the long-run equilibrium, however, this relationship is overturned
and the optimal tariff is higher, the thinner is the Home final-good market. This finding sug-
gests that reduction of import tariff for Foreign input has its greater effect on welfare when
accompanied by liberalization of entry in the Home final-good market in longer-term perspec-
tives.
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1 Introduction

Recent years have witnessed much faster growth in intermediate input trade than final good. It
is often argued that this rapid growth in intermediate input has triggered by the aspect that in-
ternational trade allows each country to vertically specialize in only narrowly defined production
by fragmenting production processes spread across the globe. Further it is also argued that this
input trade growth takes place largely through foreign outsourcing in which domestic final-good
producers procure some intermediate input from foreign suppliers through contracting. Vertical
structures of this kind can be represented by bilateral oligopoly models with bargaining over the
terms of contracts that specify the price and quantity. In reality, however, a large fraction of
intermediate products are also internationally traded through markets among anonymous final-
good producers and intermediate-input suppliers rather than vertical negotiation. For example,
noticing that the term “outsourcing” refers to the procurement of inputs outside the firm that
takes place through both contractual arrangements and spot markets, Spencer (2005) stresses
that this distinction is important for evaluating gains from outsourcing and its relevant policy
interventions for China’s processing exports.

Based on our belief that bargaining is not the only means of procuring intermediate inputs
in foreign outsourcing, we develop a vertical oligopoly model to capture an impact that market-
based interactions between vertically related industries can have on trade policy. In our model,
there exist a large number of potential entrants to a domestic downstream sector and a foreign
upstream sector, where the number of entrants in each sector is either exogenous or endogenous.
A domestic government imposes a tariff to foreign input transacted though markets, where the
price and quantity are determined at the market-clearing levels (instead of bilateral bargaining).
In this setting, we argue that there is a characterization of how optimal tariffs that maximize
domestic welfare vary with the market thickness between the domestic and foreign countries. In
particular, we show that, while optimal tariffs vary with the numbers of domestic downstream
firms and foreign upstream firms, policy implications from the model are drastically different,
depending upon whether the market structures are exogenous or endogenous.

We find that, in the short run, the optimal tariff is higher, the thicker is the domestic final-
good market (relative to foreign input market). In the long run, however, this relationship is
overturned and the optimal tariff is higher, the thinner is the domestic final-good market. This
difference comes mainly from the fact that trade policy has a crucial impact not only on entry
and exit of foreign firms, but also on domestic firms in the long run. In vertical specialization
where domestic firms’ output and foreign firms’ input are complements, if tariff on intermediate
input from foreign discourages entry of foreign firms, it also discourages entry of domestic firms.
We call this a “firm-colocation” effect, which is used as an antonym to a “firm-delocation” effect
in horizontal specialzation (see, e.g., Bagwell and Staiger, 2012a, b). This finding suggests that
reduction of import tariff for Foreign input has its greater effect on welfare when accompanied
by liberalization of entry in the Home final-good market in longer-term perspectives.
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2 Model

Consider a setting with two countries, Home and Foreign, specializing respectively in a final
good and an intermediate input. Foreign has n identical upstream firms, F1, F2, ..., Fn. Home has
m identical downstream firms, H1,H2, ..., Hm. In the upstream sector in Foreign, a homogeneous
intermediate input is produced with constant marginal cost c and shipped to Home with a specific
tariff rate t. In the downstream sector in Home, the imported intermediate input is transformed
into a homogeneous final good with constant marginal cost cd, which is normalized to zero for
simplicity. In addition to these production costs, upon entry, Home and Foreign firms incur fixed
entry costs KH and KF respectively.

There is a unit mass of identical consumers with a quasi-linear utility function, U(Q) + y,
where Q is a imperfectly competitive final good produced by using an intermediate input and
y is a perfectly competitive numeraire good.1 Assuming income to be high enough, maximizing
U(Q)+y subject to the budget constraint gives demand for the homogeneous product: Q = Q(P ).
Assume the preferences are such that (i) Q(P ) is twice continuously differentiable and Q′(P ) < 0
for all P ∈ (0, P̄ ) where P̄ ≡ limQ→0 P−1(Q) and (ii) Q(P ) = 0 for P ≥ P̄ . These assumptions
guarantee the existence of the Cournot equilibrium. We will often work with inverse demand
functions. These assumptions regarding Q(P ) imply that the inverse demand function P = P (Q)
is twice continuously differentiable and P ′(Q) < 0 for all Q ≥ 0. For a sharper characterization,
we assume that the final goods are consumed only in Home and that the Foreign government
does not undertake trade policy, but none of the key results relies on these assumptions.

We consider the three-stage game. In the first-stage, the Home government sets a specific
tariff rate, t, to maximize Home welfare which consists of consumer surplus, aggregate Home
profits and tariff revenues. In the second stage, upon paying the fixed entry cost KF , Foreign
firms enter the market and engage in a Cournot competition in the upstream sector where profit-
maximizing upstream firms commit to choose the quantity of the intermediate input taking rival
firms’ input as given. In the third stage, upon paying the fixed entry cost KH , Home firms
enter the market and engage in a Cournot competition in the downstream sector where profit-
maximizing downstream firms commit to choose the quantity of the final good taking rival firms’
output and the input price (denoted by r) as given. The input price r is determined at the market
clearing level which equals the total amount of the intermediate input demanded by downstream
firms to the total amount of the intermediate input supplied by the upstream firms.

In order to illustrate important policy implications and empirically testable predictions, we
conduct both the “short-run” analysis and the “long-run” analysis in a unified framework. In
the short-run analysis in Section 3, we bypass entry considerations in both sectors of production
and assume that the numbers of Home and Foreign firms are fixed. Thus, in this section, tariff

1As is well-known, if this numeraire is freely tradable across Home and Foreign, wage rates between these tow
countries are equalized, allowing us to interpret the model in general-equilibrium terms. Since labor-market-clearing
conditions are not explicitly analyzed in this setting, we implicitly assume that common wage rates are unity whereby
all production costs and entry costs are measured by this numeraire.
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has no effect on the market structure. In Section 4, by contrast, we assume that after observing
tariff rates, firms enter the market. Thus, in this section, the market structure is endogenous in
that tariff changes the numbers of Home and Foreign firms as well as the outputs of these firms.

3 Exogenous Market Structure

This section considers an environment where the market structure is given. The entry costs KH

and KF have been sunk and entry of Home and Foreign firms has taken place. Thus, we treat the
numbers of these firm m,n as fixed and invariant to the tariff rate. In what follows, we derive
the Subgame Perfect Nash Equilibria (SPNE) in pure strategies of the model described in the
previous section. Formal proofs for all propositions and lemmas are relegated to the appendix.

3.1 Cournot Competition

We first analyze the third-stage Cournot competition among Home firms in the final-good mar-
ket. Each Home firm Hi chooses qi to maximize P

((
qi +

∑m
j 6=i qj

)− r
)

qi taking other down-
stream firms’ outputs and input price r(< P̄ ) as given. If qi > 0 for all i = 1, 2, ..., m, the first-order
conditions are

P

(
qi +

m∑

j 6=i

qj

)
− r + P ′

(
qi +

m∑

j 6=i

qj

)
qi = 0.

The assumption below ensures that the solution to the maximization problem is unique.

Assumption 1 The demand function Q(P ) is logconcave.

The equivalent assumption in terms of inverse demand function is:

Assumption 1’ P ′(Q) + QP ′′(Q) ≤ 0 for all Q ≥ 0.

Assumption 1 holds if and only if marginal revenue is steeper than demand. In the trade
literature, this assumption is first introduced in Brander and Spencer (1984a, b) who show that
when the Home country imports from a Foreign monopolist with constant marginal cost, a small
tariff improves welfare if and only if Assumption 1’ holds.

In our framework, in addition to guaranteeing uniqueness, Assumption 1’ ensures that the
optimal tariff is non-negative at least for some m > 1 and n > 1. A convenient way to state
Assumption 1’ is in terms of elasticity of slope which is defined as ε(Q) ≡ QP ′′(Q)

P ′(Q) . Observe that
ε(Q) ≥ −1 ⇔ P ′(Q) + QP ′′(Q) ≤ 0. This condition is sufficient to prove the main results. For
analytical simplicity, we focus on a class of demand functions which not only satisfy Assumption
1 but also satisfy the following:

Assumption 2 ε(Q) = QP ′′(Q)
P ′(Q) = ε.
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Note, if ε is constant for all Q(≥ 0), ε is greater than −1 and Assumption 1’ or Assumption 1
is satisfied as well. Although this assumption is admittedly restrictive, any well-known inverse
demand function satisfies Assumption 2: linear, constant elasticity, and semi-log among others.2

Now back to the Cournot competition in the downstream sector. If r ∈ (0, P̄ ), Assumption 1
or 1’ guarantees that there exists a unique symmetric equilibrium q̂1 = ... = q̂m = q̂(> 0) such
that

q̂ = −P (Q̂)− r

P ′(Q̂)
,

where Q̂ = mq̂ is uniquely solves the following equation:

mP (Q̂) + Q̂P ′(Q̂) = mr. (3.1)

Let πH(q, q̂) ≡ [P (q + (m − 1)q̂) − r]q denote the post-entry profit of a downstream firm that
chooses q as its quantity given all other m− 1 firms choose q̂. Suppose πH(q, q̂) is pseudoconcave
in q at q = q̂. If r ∈ (0, P̄ ), we have that q̂1 = ... = q̂m = q̂(> 0) constitutes the Stage 3 equilibrium.
On the other hand, if r ∈ [P̄ ,∞), each downstream firm i chooses qi = 0 in the Stage 3 equilibrium
(see Ghosh and Morita (2007) for details).

Let X denote the aggregate input demanded at any given input price r ∈ (0, P̄ ). Since one
unit of final good requires one unit of intermediate input, we have that X = Q̂ = mq̂. Further
since the input price is determined at the market clearing level and the aggregate amount of
final good produced at any given r ∈ (0, P̄ ) is Q̂, it follows from (3.1) that the inverse demand
function for intermediate good X faced by upstream firms is given by

r = P (Q) +
QP ′(Q)

m
≡ g(X).3 (3.2)

From P ′(Q) + QP ′′(Q) ≤ 0 (by Assumption 1’), we have that

g′(X) =
(m + 1)P ′(Q) + QP ′′(Q)

m
=

P ′(Q)(m + 1 + ε)
m

< 0. (3.3)

Moreover, from ε(Q) = QP ′′(Q)
P ′(Q) = ε for all Q ≥ 0 (by Assumption 2), we also have that

Xg′′(X)
g′(X)

=
QP ′′(Q)(m+1+ε)

m
P ′(Q)(m+1+ε)

m

= ε.

2Ara and Ghosh (2016) analyze trade policy in matching markets by using more general demand functions:

ε′(Q)Q

ε(Q)
≤ 1 ⇐⇒ P ′′(Q)Q

P ′(Q)
≥ P ′′′(Q)Q

P ′′(Q)
,

which implies the curvature of inverse demand is greater than the curvature of slope of inverse demand for all Q ≥ 0.
3From (3.2), it follows that r depends not only on X but also on m and thus it is more precise to define r ≡ g(X, m).

While we apply this short-hand definition r ≡ g(X) for the short-run analysis (since we mainly focus on comparative
statics with respect to n), this distinction becomes important in the long-run analysis.
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Thus, the inverse demand function for intermediate good is downward-sloping and the elasticity
of slope of input demand is the same as that of final-good demand. Note that Assumption 1
implies ε ≥ −1 which in turn implies for all X ≥ 0 that

g′(X) + Xg′′(X) ≤ 0. (3.4)

Now consider the second-stage Cournot competition among Foreign firms in the intermediate-
good market. The inverse demand function faced by upstream firms at Stage 2 is given by (3.2).
Each Foreign firm Fi chooses xi to maximize

[
g

(
xi +

∑n
j 6=i xj

)
− c− t

]
xi taking other upstream

firms’ inputs as given. If xi > 0 for all i = 1, 2, ..., n, the first-order conditions are

g

(
xi +

n∑

j 6=i

xj

)
− c− t + g′

(
xi +

n∑

j 6=i

xj

)
xi = 0.

Given that limX→0 g(X) = P̄ from (3.2), condition (3.4) (which is analogous to Assumption 1’)
guarantees that there exists a unique equilibrium x̂1 = ... = x̂n ≡ x̂(> 0) such that

x̂ = −g(X̂)− c− t

g′(X̂)
,

where X̂ = nx̂ uniquely solves the following equation:

ng(X̂) + g′(X̂)X̂ = n(c + t). (3.5)

Let πF (x, x̂) ≡ [g(x + (n− 1)x̂)− c− t]x denote the post-entry profit of an upstream firm that
chooses x as its quantity given all other n− 1 firms choose x̂. Since πF (x, x̂) is strictly concave in
x for all x > 0 (by virtue of (3.4)) and r ∈ (0, P̄ ), we have that x̂1 = ... = x̂n = x̂(> 0) constitutes
the Stage 2 equilibrium.

To summarize, in the Cournot competition with given m, n and t, we have an output vector
(q̂, Q̂, x̂, X̂) and a price vector (P̂ , r̂) where

• Q̂ solves (3.1);

• X̂ solves (3.5);

• Q̂ = X̂;

• q̂ = Q̂
m , x̂ = X̂

n ;

• P̂ ≡ P (Q̂), r̂ ≡ g(X̂).

The following lemma records some comparative statics results with respect to n and t.4

4In this section, we omit comparative statics with respect to m just for simplicity. In the Appendix, we also show
these comparative statics.

5



Lemma 3.1

(i) For a given tariff rate t, the aggregate output Q̂ and aggregate input X̂ are increasing in n;
while the final-good price P̂ and input price r̂ are decreasing in n; i.e., ∂Q̂/∂n = ∂X̂/∂n > 0,
∂P̂/∂n < 0, ∂r̂/∂n < 0.5

(ii) For a given number of firms m,n, the aggregate output Q̂ and aggregate input X̂ are de-
creasing in t; while the final-good price P̂ and input price r̂ are increasing in t; i.e., ∂Q̂/∂t =
∂X̂/∂t < 0, ∂P̂/∂t > 0, ∂r̂/∂t > 0.

(iii) Let r∗ ≡ r̂ − t denote the price received by a Foreign firm in equilibrium (for each unit of the
intermediate input). Then,

dr∗

dt
Q 0 ⇔ dr̂

dt
Q 1 ⇔ 1 + ε R 0.

Not surprisingly, r̂ increases as t increases. However, dr̂
dt − 1 ≤ 0 or equivalently dr∗

dt ≤ 0
as long as the demand is logconcave. For all such demand functions, the pass-through of tariff
to an intermediate-input price faced by Home producers is less than complete. Foreign firms
absorb part of the tariff increase which acts like a terms-of-trade gain for Home. While r∗ is an
input price internal to the firms, a reduction in r∗ hurts Foreign firms and benefits Home firms.
Hence, we refer to a decrease in r∗ as an improvement in terms-of-trade in the paper, though
we are aware that r∗ is more like firms’ terms-of-trade (rather than countries’ terms-of-trade).
We introduce the concept of an input price since it can be interpreted in a similar fashion to the
terms-of-trade. The terms-of-trade improvement creates a rationale for Home to set a positive
tariff.

Note that, like the vertical oligopoly models developed by Ishikawa and Lee (1997) and
Ishikawa and Spencer (1999), there is a “double marginalization” effect at work in our model: im-
perfect competition in both the final-good market and intermediate-good market simultaneously
creates a wedge between the prices of final good and intermediate input and their marginal cost.
The inefficiency associated with this double marginalization effect in vertical oligopolies also
influences the optimal tariff set by Home.

5Note that (3.1) and (3.5) alternatively define q̂ and x̂ respectively in a unique symmetric equilibrium:

P (mq̂) + q̂P ′(mq̂) = r,

g(nx̂) + x̂g′(nx̂) = c + t,

where mq̂ = Q̂ and nx̂ = X̂. Further, by invoking the Implicit Function Theorem to these equations, we have that q̂
and x̂ are a continuously differentiable function of n:

∂q̂

∂n
> 0,

∂x̂

∂n
< 0,

which imply that an increase in n leads to the “business-creating” effect in the downstream sector whereas it also
leads to the “business-stealing” effect arises in upstream sector.
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3.2 Tariffs

In the first stage, the Home government chooses a tariff rate t to maximize Home welfare (WH ),
taking the output vector (q̂, Q̂, x̂, X̂) and the price vector (P̂ , r̂) as given. In the SPNE of the
Stage 1 subgame, WH is given by

WH ≡
[∫ Q̂

0
P (y)dy − P (Q̂)Q̂

]

︸ ︷︷ ︸
Consumer surplus (CS)

+
[
P (Q̂)− r̂

]
Q̂

︸ ︷︷ ︸
Home profits (ΠH )

+ tX̂︸︷︷︸
Tariff revenue (TR)

.6

where ΠH ≡ mπH = (P̂ − r̂)Q̂. Using r∗ = r̂ − t and simplifying the above expression gives

WH ≡
∫ Q̂

0
P (y)dy − r∗X̂.

Differentiating WH with respect to t and using ∂Q̂
∂t = ∂X̂

∂t , we get

dWH

dt
= (P (Q̂)− r∗)

∂Q̂

∂t
− ∂r∗

∂t
X̂,

The first term captures the welfare loss due to the tariff-induced output reduction (∂Q̂
∂t < 0).

Home consumers value the good at P (Q̂) while effectively it costs r∗(< P (Q̂)) to produce (from
Home’s perspective). This price-cost margin P (Q̂) − t∗ multiplied by the amount of output lost
∂Q̂
∂t is the magnitude of welfare loss. The second term captures the welfare gains arising from the
terms-of-trade improvement (∂r∗

∂t < 0). The optimal tariff rate strikes a balance between the two
competing effects – welfare gains from the terms-of-trade improvement and welfare losses from
the reduction in output. As we show below, the number of firms in each sector of production m,n

plays an important role in delineating the relative importance of the two effects, which in turn
helps to determine the sign of the optimal tariff.

Setting dWH
dt and solving for t gives the expression for the optimal tariff which is presented

later in Proposition 3.1. Here we first focus on the sign of the optimal tariff. Using ∂r∗
∂t = ∂r̂

∂t − 1,
we can express dWH

dt as follows:

dWH

dt
= (P (Q̂)− r̂)

∂Q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ + t

∂X̂

∂t
. (3.6)

Using (3.6) and noting that ∂X̂
∂t < 0, the optimal tariff is strictly positive (negative) if and only if

(P (Q̂)− r̂)
∂Q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ > (<)0. (3.7)

6For the class of inverse demand functions that satisfy Assumptions 1 and 2, WH is strictly concave in t so that
the second-order condition is satisfied, i.e., ∂2WH

∂t2
< 0.

7



Equation (3.7) indicates that the number of firms plays a key role in determining the sign of the
optimal tariff. To see this, suppose that for a given m, the number of Foreign firms n is arbitrarily
large so that the intermediate-input market becomes perfectly competitive. Then, the input price
equals its marginal cost (r̂ = c + t) and, as a result,

(
1− ∂r̂

∂t

)
X̂ = −∂r∗

∂t X̂ = 0, i.e., the terms-
of-trade motive vanishes. Only the harmful effect of the tariff – output reduction – remains.
An import subsidy raises Home welfare by increasing output and indeed the optimal tariff is
negative. More generally, when n is arbitrarily large, Home captures all profits in Cournot
competition of the downstream market. The situation is like a domestic, single-stage, Cournot
oligopoly with m firms. A positive subsidy increases welfare in an oligopoly setup by narrowing
the wedge between price and marginal cost, which explains why an import subsidy is optimal.

For the other extreme case, suppose that for a given n, the number of Home firms m is
arbitrarily large so that the final-good market becomes perfectly competitive. Then, the final-
good price equals its marginal cost (P (Q̂) = r̂) and, as a result, (P (Q̂) − r̂)∂Q̂

∂t = 0, i.e., the
welfare loss due to the tariff-induced output reduction vanishes. This is equivalent for Home
to importing the final good from Foreign and its welfare is composed of the consumer surplus
and tariff revenues. In such a case, the sign of the optimal tariff is determined exclusively by
the terms-of-trade motive, or equivalently by the sign of 1 − ∂r̂

∂t = −dr∗
dt . As the pass-through

from tariff to domestic prices is incomplete for all logconcave demand functions, 1− ∂r̂
∂t > 0 holds,

which implies that the optimal tariff is strictly positive.
The above intuition suggests that Home’s optimal tariff is positive when the number of For-

eign firms (n) is relatively smaller than the number of Home firms (m), and it is negative when
n is relatively larger than m. This comes out more cleanly in terms of the price-cost margin
ratio P̂−r̂

r̂−c−t . Note that, in the presence of the double marginalization effect, when this ratio is
small (large), the final-good market is more (less) competitive relative to the intermediate-input
market. Using (3.2) and (3.5), this ratio can be rewritten as

P̂ − r̂

r̂ − c− t
=
− Q̂P ′(Q̂)

m

− X̂g′(X̂)
n

=
n

m + 1 + ε
, (3.8)

which is increasing in n. Further, invoking the standard continuity argument, there is a range
of values such that the optimal tariff is strictly decreasing in n. Analyzing (3.6) further gives a
more precise characterization.

Proposition 3.1

Let t(n) denote the optimal tariff. At t = t(n) the following holds:

t = −Q̂P ′(Q̂)
(

(1 + ε)(m + 1 + ε)− n

mn

)
, (3.9)

where Q̂ is the aggregate output evaluated at t = t(n). Furthermore,
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FIGURE 3.1 – Optimal tariff in short run

(i) There exists n∗ such that

t(n) R 0 ⇔ n Q n∗ ≡ (1 + ε)(m + 1 + ε).

(ii) t(n) is monotonically decreasing in n.

As an illustrative example, consider the following class of inverse demand functions: P (Q) =
a − Qb, b > 0. Observe that b = 1 for linear demand and b > (<)1 for strictly concave (convex)
demand. The elasticity of slope is constant and denoted by ε = b− 1. Applying (3.8) yields

t =
(a− c)b

mn + b(b + 1)(m + b)
(b(m + b)− n) .

Note the property of the optimal tariff in Proposition 3.1 holds for this specific demand function.
In addition, the optimal tariff rate is higher when market size is greater ( ∂t

∂a > 0) and demand is
more concave ( ∂t

∂b > 0).

While we focus on how the number of Foreign firms n affect the optimal tariff t in Proposition
3.1, it is straightforward to show that the similar result holds for the number of Home firms m.
The above intuition indeed tells us that the optimal tariff is increasing in m. This in turn helps
consider how the relative number of firms n

m – which is hereafter referred to as “relative market
thickness” – affects the optimal tariff. Since the optimal tariff is increasing (decreasing) in m (n),
our model predicts that the optimal tariff should be decreasing in n

m . Thus, if n
m varies across

industries, there would exist a negative relationship between n
m and t in the short run.7 Figure

3.1 illustrates our prediction when the optimal tariff is positive.

7Empirical evidence on market-thickness effects has been documented in law and economics. For instance, Pirrong
(1993) provide evidence that thicker markets tend to lower transactions costs.
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3.3 Profits

Home and Foreign aggregate profits respectively are given by

ΠH = mπH = [P (Q̂)− r̂]Q̂, ΠF = nπF = (r(X̂)− c− t)X̂,

where πH = (P (Q̂) − r̂)q̂ and πF = (r̂ − c − t)x̂ denote respectively the post-entry profit of each
downstream and upstream firm in the SPNE of the Stage 1 subgame. Note that πH and πF are
continuous in n and strictly increasing and decreasing in n respectively. Here we examine the
impact of an increase in n on ΠH and ΠF . Differentiating ΠH with respect to n yields

dΠH

dn
= −(2 + ε)q̂P ′(Q̂)

∂Q̂

∂n
> 0.

Not surprisingly, an increase in n has a positive effect on ΠH by lowering the input price r. On
the other hand, differentiating ΠF with respect to n yields

dΠF

dn
= (n− 1)x̂g′(X̂)

∂X̂

∂n︸ ︷︷ ︸
competition effect

− ∂t

∂n
X̂

︸ ︷︷ ︸
tariff-reduction effect

.

An increase in n has two opposing effects on ΠF . First, an increase in n reduces the input price
r and lowers Foreign profits. We call this the competition effect, which is captured by the first
term in the above expression. Note that this effect exists even when the tariff is exogenously
set. Second, an increase in n lowers t and leads to higher Foreign profits. We call this indirect
effect the tariff-reduction effect, which is captured by the second term in the above expression.
Surprisingly, for arbitrarily large m, the latter effect dominates the former and ΠF rises as n

increases if the number of Foreign firms is small or the inverse demand is sufficiently concave.

Proposition 3.2

An increase in the number of Foreign firms might lead to higher Foreign profits. For arbitrarily
large m, dΠF

dn

∣∣
m=∞ > 0 if

n <
1 +

√
1 + 4(1 + ε)(2 + ε)

2
.

Proposition 3.2 suggests that an indirect increase in Foreign profits due to a lower tariff on
intermediate inputs (induced by larger n) might outweigh a direct decrease in Foreign profits
due to more competition in the upstream market. This situation is more likely when the number
of Foreign firms n is small or the curvature of the inverse demand ε is big. To see this clearly,
consider P (Q) = a − Qb for which ε = b − 1. For linear demand (b = 1), limm→∞ dΠF

dn R 0 if and
only if n Q 2. This implies that for sufficiently large m, Foreign profits increase as the number
of Foreign firms increases from one to two. As demand functions become more concave, this
counter-intuitive outcome becomes more likely.
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4 Exogenous Market Structure

In Section 3, we have assumed that the numbers of Home and Foreign firms are fixed. Since m

and n are fixed, these numbers do not vary with tariff rates. Now we consider an environment
where m and n are endogenously determined and tariffs are set prior to entry decisions. Here,
in addition to the the direct effect on quantities and prices, tariffs also indirectly affect quan-
tities and prices by influencing the market structure. In this setting, we address the following
questions: What is the relationship between domestic competition policy and international trade
policy in the presence of vertical specialization? Should the Home government liberalize entry
in its final-good market in order to enhance an effect of liberalization in input trade?

In the context of single-stage oligopoly models, Horstmann and Markusen (1986), Venables
(1985) and more recently Etro (2011) and Bagwell and Staiger (2012a, b) all have shown that
the endogenous market structure can drastically alter the optimal trade policy obtained from
the exogenous market structure. Like these preceding papers, we also find that free entry can
affect the optimal tariff. Recall in the short-run equilibrium that the optimal tariff is higher, the
thicker is the final-good market in Home (relative to the input market in Foreign). In the long-
run equilibrium, by contrast, we show that this relationship is overturned and the optimal tariff
is higher, the thinner is the Home final-good market. This finding suggests that reduction of im-
port tariff for Foreign input has its greater effect on welfare when accompanied by liberalization
of entry in the Home final-good market in longer-term perspectives.

The timing of events is as outlined in the last paragraph of Section 2. In Stage 1, the Home
government chooses a tariff rate t, following which entry occurs. In Stage 2, upon paying a fixed
entry cost KF , Foreign firms enter in the upstream sector and engage in Cournot competition
taking other upstream firms’ inputs as given. In Stage 3, upon paying a fixed entry cost KH ,
Home firms enter in the downstream sector and engage in Cournot competition taking other
downstream firms’ outputs and input price r as given. As before, we derive the Subgame Perfect
Nash Equilibria (SPNE) in pure strategies of the model and focus on a class of demand functions
which satisfy Assumptions 1 and 2.

4.1 Cournot Competition

Let us start with analyzing Stage 3. The Cournot competition works exactly the same way as
before and the unique equilibrium in this stage is characterized by q̂1 = q̂2 = ... = q̂m ≡ q̂ such
that

q̂ = −P (Q̂)− r

P ′(Q̂)
,

where Q̂ satisfies the following for any given m:

mP (Q̂) + Q̂P ′(Q̂) = mr. (4.1)

11



In addition to (4.1), the number of Home firms m is endogenously determined as there is free
entry of firms. Recall from section 2 that the entry cost of a Home firm is KH . In the long run
where entry is unrestricted, entry occurs until the post-entry profit of Home firms equals the
entry cost. Let πH(m) = (P (mq)− r)q denote the post-entry profit of Home firms in the SPNE of
the Stage 3. Then the free entry condition in the downstream sector is given by πH(m̂) = KH :

[P (m̂q)− r]q = KH .

Aggregating this condition for all m̂ Home firms, m̂ satisfies the following for any given Q:

[P (Q)− r]Q = m̂KH . (4.2)

We assume that KH ≤ πH(1) ≡ K̄H , which guarantees that at least one Home firm enters in the
equilibrium.

Assumption 3 KH ≤ K̄H .

Since πH is continuous in m and strictly decreasing in m for all m > 1, Assumption 3 also ensures
that m̂ uniquely exists in the SPNE of the Stage 3 subgame.

In Stage 2, the Cournot competition works exactly the same way as before. Noting that (3.2)
holds in both the short-run and long-run equilibria, the inverse demand function for intermedi-
ate good X faced by upstream firms is given by

r = P (Q) +
QP ′(Q)

m
≡ g(X,m),

which satisfies

gx(X, m) ≡ ∂g(X,m)
∂X

=
(m + 1 + ε)P ′(Q)

m
< 0,

gm(X, m) ≡ ∂g(X,m)
∂m

= −QP ′(Q)
m2

> 0,

gxm(X, m) ≡ ∂2g(X,m)
∂X∂m

= −(1 + ε)P ′(Q)
m2

> 0.

Using the expression of input price r = g(X, m),8 the unique equilibrium in this stage is charac-
terized by x̂1 = x̂2 = ... = x̂n ≡ x̂ such that

x̂ = −g(X̂,m)− c− t

gx(X̂, m)
,

8We define r = g(X) in the short run (see (3.2)) as the main focus is on comparative statics with respect to n. Here
we explicitly define r as a function of m as well as X since m is endogenous in the long run.
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where X̂ satisfies the following for any given n:

ng(X̂, m) + gx(X̂, m)X̂ = n(c + t). (4.3)

In addition to (4.3), the number of Foreign firms n is also endogenously determined by equaling
entry occurs until the post-entry profit of Foreign firms to the entry cost. Let πF (n) = (g(nx) −
c − t)x denote the post-entry profit of Foreign firms in the SPNE of the Stage 2. Then the free
entry condition in the upstream sector is given by πF (n̂) = KF :

[g(n̂x,m)− c− t]x = KF .

Aggregating this condition for all n̂ Foreign firms, n̂ satisfies the following for any given X:

[g(X, m)− c− t]X = n̂KF . (4.4)

We assume that KF ≤ πF (1) ≡ K̄F , which guarantees that at least one Foreign firm enters in
the equilibrium. By applying the similar claim, this also ensures that n̂ uniquely exists in the
SPNE of the Stage 2 subgame.9

Assumption 4 KF ≤ K̄F .

To summarize, in the Cournot competition with given KH , KF and t, we have an output vector
(q̂, Q̂, x̂, X̂), a price vector (P̂ , r̂) and a number vector (m̂, n̂) where

• Q̂ solves (4.1);

• X̂ solves (4.3);

• m̂ solves (4.2);

• n̂ solves (4.4);

• Q̂ = X̂;

• q̂ = Q̂
m̂ , x̂ = X̂

n̂ ;

• r̂ ≡ g(X̂, m̂), P̂ ≡ P (Q̂).

Note that (4.1) and (4.3) are the market clearing (MC) conditions that hold even in the short
run, whereas (4.2) and (4.4) are the free entry (FE) conditions that hold only in the long run.
These two conditions jointly pin down the number of firms as well as the output of these firms
in the long-run equilibrium.

9Following the previous section, we can show that q̂1 = ... = q̂m = q̂(> 0) constitutes the Stage 3 equilibrium
whereas x̂1 = ... = x̂n = x̂(> 0) constitutes the Stage 2 equilibrium.
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FIGURE 4.1 – Equilibrium outcomes

Figure 4.1 illustrates the equilibrium outcomes which can be solved from the MC and FE
conditions. An equilibrium in the SPNE of the Stage 3 subgame is a vector (Q̂, m̂), which solves
(4.1) and (4.2) in the downstream sector in Home. The second quadrant of Figure 4.1 depicts the
relationship between Q and m, where (4.1) and (4.2) are given by MCD and FED respectively.
The fact that FED is steeper than MCD follows from noting that

dQ

dm

∣∣∣∣
FED

=
2q

2 + ε
>

dQ

dm

∣∣∣∣
MCD

=
q

m + 1 + ε
.

Point ED, the intersection of MCD and FED, uniquely determines the equilibrium vector (Q̂, m̂).
From (4.2) and Q̂ = m̂q̂, it follows that m̂ and q̂ are given by

m̂ =

√
−P ′(Q̂)Q̂2

KH
, q̂ =

√
− KH

P ′(Q̂)
.

Similarly, an equilibrium in the SPNE of the Stage 2 subgame is a vector (X̂, n̂), which solves
(4.3) and (4.4) in the upstream sector in Foreign. The first quadrant of Figure 4.1 depicts the
relationship between X and n, where (4.3) and (4.4) are given by MCU and FEU respectively.
The fact that FEU is steeper than MCU follows from noting that

dX

dn

∣∣∣∣
FEU

=
2x

2 + ε
>

dX

dn

∣∣∣∣
MCU

=
x

n + 1 + ε
.

Point EU , the intersection of MCU and FEU , uniquely determines the equilibrium vector (X̂, n̂),
where

n̂ =

√
−gx(X̂, m̂)X̂2

KF
, x̂ =

√
− KF

gx(X̂, m̂)
.
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FIGURE 4.2 – Market thickness and price-cost margin

It is useful to work with the relative market clearing (RMC) condition and relative free entry
(RFE) condition. Dividing (4.1) by (4.3) yields the RMC condition:

P (Q)− r

g(X, m)− c− t
=

(
P ′(Q)

gx(X, m)

)
z, (4.5)

which holds even in the short run.10 Further, dividing (4.2) by (4.4) yields the RFE condition:

P (Q)− r

g(X, m)− c− t
=

k

z
, (4.6)

where z ≡ n
m is the relative thickness of markets and k ≡ KH

KF
is the relative fixed cost of entry.

This latter condition (4.6) holds only in the long run.
Figure 4.2 illustrates the equilibrium outcome which can be solved from the RMC and RFE

conditions. Noting r = g(X, m), the figure depicts the relationship between z and P−r
r−c−t , where

(4.5) and (4.6) are given by RMC and RFE respectively. The fact that RMC is upward-sloping
and RFE is downward-sloping directly follows from (4.5) and (4.6). Point E, the intersection of
RMC and RFE, uniquely determines the equilibrium vector (ẑ, P̂−r̂

r̂−c−t). Noting that the system of
equations (4.5) and (4.6) can be solved for this vector, we get

ẑ =

√
k
gx(X̂, m̂)

P ′(Q̂)
,

P̂ − r̂

r̂ − c− t
=

√
k

P ′(Q̂)
gx(X̂, m̂)

.

Given the equilibrium outcomes, we next examine comparative statics with respect to t and KH .

10Since P ′(Q)
gx(X,m)

= m
m+1+ε

from (3.3), the RMC condition (4.5) is also expressed as P (Q)−r
g(X,m)−c−t

= n
m+1+ε

, which is the
same as (3.8).
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FIGURE 4.3 – Effects of an increase in t

Effect of a change in tariff rate: First we consider the effect of a change in tariff rate t.
Observe that t only appears in (4.3) and (4.4). Hence, only MCU and FEU are affected by a
change in t. From (4.3) and (4.4) it follows that as t increases, n must decrease for any given
X and both MCU and FEU curves shift to the left; however this shift is greater for FEU than
MCU . Consequently, as illustrated in Figure 4.3, n must decrease for any given X and both X̂

and n̂ decline. Further, since Q = X, a decline in X implies a decline in Q, which successively
induces changes in MCD and FED. From (4.1) and (4.2), as Q decreases, m must decrease and
both MCD and FED curves shift to the right; however this shift is greater for FED than MCD.
As a result, both Q̂ and n̂ decline.

Recall from section 3, a tariff lowers equilibrium outputs (Q̂, X̂) and raises equilibrium prices
(P̂ , r̂) even when the numbers of Home and Foreign firms are exogenously given. Here, a tariff
discourages entry in both sectors of production m̂, n̂. This effect lowers outputs and raises prices
even further.

It is important to emphasize that trade policy has a crucial impact not only on Foreign firms,
but also on Home firms through “firm-colocation” effects. In vertical specialization, Home firms’
output and Foreign firms’ input are complements. Thus, when tariff on intermediate input from
Foreign discourages entry of Foreign firms, it also discourages entry of Home firms (∂m̂

∂t < 0, ∂n̂
∂t <

0). Note the firm colocation effect occurs only in vertical specialization. If we consider horizontal
specialization where Home and Foreign firms’ outputs are substitutes, a “firm-delocation” effect
arises: when tariff on final good from Foreign discourages entry of Foreign firms, it encourages
entry of Home firms (∂m̂

∂t > 0, ∂n̂
∂t < 0).11

11For example, Bagwell and Staiger (2012a, b) study long-run effects of trade policy in which two countries trade a
homogeneous final good. The markets are segmented and firms compete in a Cournot fashion, whereby two-way trade
occurs in a homogeneous good. In the long-run setup with fixed entry costs, they show that higher tariff increases the
number of firms in the importing country and decreases the number of firms in the exporting country.
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FIGURE 4.4 – Effects of an increase in t

Figure 4.4 illustrates an impact of an increase in t in terms of RMC and RFE given by (4.5)
and (4.6). As t increases, both RMC and RFE curves shift down in (z, P−r

r−c−t) space, whereby ẑ

increases but P̂−r̂
r̂−c−t decreases in long-run equilibrium. The fact that ẑ increases with t implies

that, although both m̂ and n̂ are lowered by an increase in t, m̂ declines relatively more than n̂.12

The following lemma summarizes some important comparative statics results that arise from
Figures 4.3 and 4.4.

Lemma 4.1

(i) For a given entry cost Ki, the aggregate output Q̂ and aggregate input X̂ are decreasing in t;
while the final-good price P̂ and input-price r̂ are increasing in t; i.e., ∂Q̂/∂t = ∂X̂/∂t < 0,
∂P̂/∂t > 0, and ∂r̂/∂t > 0

(ii) For a given entry cost Ki, the number of firms m̂, n̂ is decreasing in t and the market thick-
ness ẑ = n̂/m̂ is increasing in t; i.e., ∂m̂/∂t < 0, ∂n̂/∂t < 0 and ∂ẑ/∂t > 0.

(iii) Let r∗ ≡ r̂ − t denote the price received by a Foreign firm. Then, there exists ε∗ ∈ (0, 1) such
that

dr∗

dt
Q 0 ⇔ dr̂

dt
Q 1 ⇔ ε∗ R 0.

Lemma 4.1 (iii) says that an increase in tariff improves the terms-of-trade, i.e., lowers r∗, if
and only if the demand is concave. Recall that when the market structure is exogenous, tariff
reduces r∗ for all logconcave demand functions (ε ≥ −1). When the market structure is endoge-
nous, in contrast, tariff reduces r∗ only for concave demand functions (ε ≥ ε∗). This suggests that
terms-of-trade improvement is less likely with endogenous market structure. The reasoning goes

12Note that if we consider horizontal specialization, it follows from the firm delocation effect that ∂ẑ
∂t

< 0.
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as follows. Differentiating the implicit terms-of-trade r∗ = r̂ − t and using ∂X̂
∂t = n̂∂x̂

∂t + x̂∂n̂
∂t ,

∂r∗

∂t
= gx(X̂, m̂)n̂

∂x̂

∂t
+ gx(X̂, m̂)x̂

∂n̂

∂t
+ gm(X̂, m̂)

∂m̂

∂t
− 1.

Note when the market structure is exogenous, the second and third terms are absent. In other
words, when the market structure is endogenous, tariff gives rises to additional adjustments
through the exit of Home and Foreign firms. Further substituting ∂m̂

∂t and ∂n̂
∂t in Lemma 4.1(ii),

the above expression can be simplified as

∂r∗

∂t
= gx(X̂, m̂)

∂x̂

∂t
.

Thus, the terms-of-trade improvement occurs (∂r∗
∂t < 0) if and only if the average imported input

of Foreign firms x̂ increases by tariff (∂x̂
∂t > 0). Although this is less likely to occur at first glance,

we find that whether the average outputs q̂, x̂ decrease by tariff depends on the elasticity of slope
of demand ε = QP ′′(Q)

P ′(Q) in our model:

∂q̂

∂t
R 0 ⇐⇒ ε R 0,

∂x̂

∂t
R 0 ⇐⇒ ε R ε∗.

Intuitively, while an increase in t decreases aggregate outputs Q̂, X̂, it also discourages entry of
firms m̂, n̂, which reduces the degree of competition. Consequently, surviving firms might find it
profitable to increase their outputs, which is caused by the exit of rival firms. More generally, our
model suggests that the decrease in aggregate outputs is largely accounted for by the decrease
in the numbers of firms m̂, n̂, whereas net changes in the average outputs q̂, x̂ are ambiguous.13

Effect of a change in entry cost: Recall that we examine comparative statics with respect to
the number of Foreign firms n (in addition to t) in the short run. In the long run, however, since
the number of firms is an endogenous variable, we cannot conduct these comparative statics. A
natural candidate of an exogenous variable that shapes the numbers of Home and Foreign firms
m,n (and the relative thickness of markets n

m ) would then be firms’ entry costs, KH and KF .
Thus we consider the effect of a change in these entry costs. Note these costs can be interpreted
as “competition policy” broadly defined, or policies in general – as well as other institutional
features of an economy – that make it difficult to start a business. While we focus on the effect
of Home’s entry cost KH , the effect of Foreign’s entry cost KF is qualitatively similar. These
comparative statics allow us to show that the optimal tariff can affect market thickness as well,
but the thickness is still constrained by the limits given by KH and KF in the next subsection.

Observe that KH only appears in (4.2). Hence, only FED is affected by a change in KH . From
(4.2) it follows that as KH increases, m must decrease for any given Q and FED curves shift to

13This finding is similar with that of Arkolakis et al. (2008), who find that an increase in transport cost decreases
the export volume mainly through the numbers of varieties in the model of monopolistic competition and free entry.
(Note in the short run where the numbers of firms m, n are fixed, we have that ∂q̂

∂t
< 0 and ∂x̂

∂t
< 0 for any ε.)
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FIGURE 4.5 – Effects of an increase in KH

the right. Consequently, using a similar diagram in Figure 4.3, we find that m must decrease for
any given Q and both Q̂ and m̂ decline. Further, since Q = X, a decline in Q implies a decline in
X, which successively induces changes in MCU and FEU . From (4.3) and (4.4), as X decreases,
m must decrease and both MCU and FEU curves shift to the left; however this shift is greater
for FEU than MCU . As a result, both X̂ and m̂ decline. Note importantly that, as in trade policy,
competition policy also has the “firm-colocation” effects: when it is difficult to start a business in
Home, this discourages entry of Foreign firms as well as Home firms. In that sense, there is a
complementarity between competition policy and trade policy.

Figure 4.5 illustrates an impact of an increase in KH in terms of RMC and RFE. As KH

increases, it follows from (4.5) and (4.6) that only the RFE curve shifts up in (z, P−r
r−c−t) space,

whereby both ẑ and P̂−r̂
r̂−c−t increase in long-run equilibrium. As in the case of t, the fact that ẑ

increases with KH implies that, although both m̂ and n̂ are lowered by an increase in KH , m̂

declines relatively more than n̂.
The following lemma summarizes some important comparative statics results with respect

to KH .

Lemma 4.2

(i) For a given tariff rate t and Foreign entry cost KF , the aggregate output Q̂ and aggregate
input X̂ are decreasing in KH ; while the final-good price P̂ and input price r̂ are increasing
in KH ; i.e., ∂Q̂/∂KH = ∂X̂/∂KH < 0, ∂P̂ /∂KH > 0, ∂r̂/∂KH > 0.

(ii) For a given tariff rate t and Foreign entry cost KF , the number of firms m̂, n̂ is decreasing
in KH and the market thickness ẑ is increasing in KH ; i.e., ∂m̂/∂KH < 0, ∂n̂/∂KH < 0 and
∂ẑ/∂KH > 0.
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4.2 Tariffs

In the first stage, the Home government chooses a tariff rate t to maximize Home welfare (WH ),
taking the output vector (q̂, Q̂, x̂, X̂), the price vector (P̂ , r̂) and the number vector (m̂, n̂) as given.
As profits are zero under free entry, Home welfare effectively consists of consumer surplus and
tariff revenues only. Thus, in the SPNE of Stage 1 subgame, WH is given by

WH ≡
[∫ Q̂

0
P (y)dy − P (Q̂)Q̂

]

︸ ︷︷ ︸
Consumer surplus

+ tX̂︸︷︷︸
Tariff revenue

. (4.7)

Differentiating WH with respect to t, we get

dWH

dt
=

(
1− ∂P (Q̂)

∂t

)
Q̂ + t

∂X̂

∂t
.

Setting dWH
dt = 0 and solving for t gives the expression for the optimal tariff which is presented

later in Proposition 4.1. Since ∂X̂
∂t < 0, the optimal tariff is strictly positive (negative) if and

only if 1− ∂P (Q̂)
∂t > (<)0. In the short-run analysis, we argue that tariff induces the welfare loss

due to the tariff-induced output reduction but the welfare gain arising from the terms-of-trade
improvement. However, the above expression is not directly related to how the terms-of-trade r∗

improves by tariff.
To better connect the optimal tariff in the short-run and long-run equilibria, noting that the

aggregate Home profit is zero under free entry, i.e., (P (Q̂) − r̂)Q̂ = m̂KH in the SPNE, we have
P (Q̂)Q̂ = r̂Q̂ + m̂KH . Substituting this equality into (4.7) yields

WH =
∫ Q̂

0
P (y)dy − g(X̂, m̂)Q̂− m̂KH + tX̂. (4.8)

The expression (4.8) implies that Home welfare is total surplus defined as gross benefit less the
sum of production cost and entry cost (from Home’s perspectives). Further, using r̂ − t = r∗ and
simplifying (4.8), we have that

WH =
∫ Q̂

0
P (y)dy − r∗X̂ − m̂KH .

Note this expression is similar to that in the short run except for the extra term m̂KH : in the
long-run, m̂ entering Home firms pay the entry cost KH and Home welfare takes into account
the total entry cost m̂KH . Noting Q̂ = X̂ and differentiating this WH with respect to t, we get

dWH

dt
= (P (Q̂)− r∗)

∂Q̂

∂t
− ∂r∗

∂t
X̂ − ∂m̂

∂t
KH .
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As in the short run, the first term captures the welfare loss due to the tariff-induced output
reduction (∂Q̂

∂t < 0), and the second term captures the welfare gain arising from the terms-of-
trade improvement (∂r∗

∂t < 0). In contrast to the short run, however, the third term captures the
welfare loss due to the tariff-induced reduction of Home firms (∂m̂

∂t < 0), which arises only in the
long run. In addition, the terms-of-trade improvement does not always occur for all logconcave
demand functions and tariff reduces r∗ only for concave demand functions (∂r∗

∂t < 0 if and only if
ε > ε∗).

Using the expression for ∂r∗
∂t = ∂r̂

∂t − 1, we can express dWH
dt as follows:

dWH

dt
= (P (Q̂)− r̂)

∂Q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ − ∂m̂

∂t
KH + t

∂X̂

∂t
. (4.9)

Following the previous section, we first focus on the optimal tariff. Noting that ∂X̂
∂t < 0 in (4.9),

the optimal tariff is strictly positive (negative) if and only if

(P (Q̂)− r̂)
∂Q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ − ∂m̂

∂t
KH > (<)0. (4.10)

Contrary to Section 3, the sign of the optimal tariff cannot be argued by the numbers of Home and
Foreign firms m̂, n̂ as these numbers are not parameters in the long run. Since ∂Q̂

∂t = m̂∂q̂
∂t + q̂ ∂m̂

∂t

and (P (Q̂)− r̂)q̂ −KH = 0 under free entry, condition (4.10) is rewritten as

(P (Q̂)− r̂)m̂
∂q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ > (<)0. (4.11)

It is important to note that (4.11) is exactly the same as (3.7) since Q̂ = mq̂ and hence ∂Q̂
∂t = m∂q̂

∂t

in the short run. This implies that the sign of the optimal tariff does not depend on whether the
profits are positive or zero. Instead, it depends on the signs of ∂q̂

∂t and ∂r̂
∂t − 1 = ∂r∗

∂t , which are in
turn crucially influenced by whether the market structure is exogenous or endogenous.14

The comparative statics in Section 4.1 tell us that whether ∂q̂
∂t and ∂r∗

∂t increase depends on
the curvature of the demand function ε. Together with (4.11), the sign of the optimal tariff also
depends on ε. In particular, the optimal tariff is positive for concave demand functions (ε ≥ ε∗)
as both ∂q̂

∂t > 0 and ∂r∗
∂t > 0, whereas the optimal tariff is negative for convex demand functions

(ε ≤ 0) as both ∂q̂
∂t < 0 and ∂r∗

∂t < 0 (note if demand is linear (ε = 0), ∂q̂
∂t = 0 and ∂r∗

∂t > 0 and thus the
optimal tariff is always negative for any Q̂, X̂, m̂, n̂.) Further, from (4.9) and ∂m̂

∂t < 0, the optimal
tariff t is increasing in the entry cost KH , which comes from a complementarity between trade
policy and competition policy through the firm colocation effect. This suggests that a reduction of
import tariffs for component has its largest effect on welfare when accompanied by liberalization
of entry in the domestic final-good market.

14More specifically, ∂q̂
∂t

< 0 and ∂r∗
∂t

< 0 in the exogenous market structure, whereas ∂q̂
∂t
R 0 and ∂r∗

∂t
R 0 in the

endogenous market structure.
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To see this from another angle, suppose that the Home government can choose not only tariff
rate t but also entry cost KH to maximize Home welfare in the SPNE of Stage 1 subgame. Then,
differentiating (4.8) with respect to KH gives

dWH

dKH
= (P (Q̂)− r̂)

∂Q̂

∂KH
− ∂r̂

∂KH
Q̂− m̂− ∂m̂

∂KH
KH + t

∂X̂

∂KH
. (4.12)

Noting that ∂m̂
∂KH

< 0 in (4.12), the optimal entry cost is strictly positive if and only if

(P (Q̂)− r̂)
∂Q̂

∂KH
− ∂r̂

∂KH
Q̂− m̂ + t

∂X̂

∂KH
< 0.

Since ∂Q̂
∂KH

< 0 and ∂r̂
∂KH

> 0, the optimal competition policy is positive if the optimal tariff is

positive (i.e., t > 0). Further from (4.12) and ∂X̂
∂KH

< 0, the optimal entry cost KH is increasing in
the tariff rate t. Proposition 4.1 presents these findings and provides a sharper characterization.

Proposition 4.1 Let t(KH) denote the optimal tariff. At t = t(KH), the following holds:

t = −Q̂P ′(Q̂)
(

2(m̂ + n̂)ε + (ε + 1)(ε− 2)
4m̂n̂

)
, (4.13)

where Q̂ is the aggregate output evaluated at t = t(KH). Furthermore,

(i) There exists ε∗∗ ∈ (0, 1) such that

t(KH) R 0 ⇐⇒ ε R ε∗∗.

(ii) t(KH) is monotonically increasing in KH .

Recall that there exists a negative relationship between n
m and t in the short-run equilibrium:

the optimal tariff t is higher, the thicker is the Home final-good market relative to Foreign input
market (i.e., lower n

m ), as depicted in Figure 3.1. In the long-run equilibrium, however, this rela-
tionship is overturned and our model predicts that there exists a positive relationship between
n
m and t. As noted above, in the long run where firms can freely enter and exit, the market thick-
ness is constrained by the limits of the entry costs, KH and KF . Further it follows from Lemma
4.2 that the greater KH makes it more difficult to start a business not only for Home firms but
also for Foreign firms through the firm colocation effect, whereby the market thickness ẑ = n̂

m̂

is higher. At the same time, since there is a complementarity between competition policy and
trade policy, the greater KH also induces the higher optimal tariff t, as seen in Proposition 4.1.
Combining these two observations establishes that the optimal tariff t is higher, the thinner is
the Home final-good market (i.e., higher n

m ), as depicted in Figure 4.6. This finding suggests that
reduction of import tariff for Foreign input has its greater effect on welfare when accompanied
by liberalization of entry in the Home final-good market in longer-term perspectives.
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FIGURE 4.6 – Optimal tariff in long run

What should we make of the fact that (a) demand curvature matters for the sign of the opti-
mal tariff and (b) the relationship between market thickness and tariff differs between the two
cases – endogenous and exogenous market structures? Our reading of the literature suggests
that, in terms of the dependence of optimal policy on demand curvature, our results have a sim-
ilar flavor to some of the existing results in the trade literature. For example, the classic result
that the sign of the optimal tariff in the presence of a foreign monopoly depends on whether
there is incomplete pass-through, which in turn depends on whether the demand curve is flat-
ter than the marginal revenue curve (Brander and Spencer, 1984a,b; Helpman and Krugman,
1989, Chapter 4). Concerning the difference in results between endogenous and exogenous mar-
ket structures, our finding is in the line with Horstmann and Markusen (1986) and Venables
(1985), who have shown that in the single-stage oligopoly models, entry can alter optimal trade
policy due to firm-delocation effects. This point has also recently been made by Etro (2011) and
Bagwell and Staiger (2012a, b) in the contexts of strategic trade policy and trade agreements
respectively. We do not necessarily view (b) as a shortcoming. Depending on the industry char-
acteristics, such as industry-specific fixed costs or stability of demand, some industries fit an
exogenous market structure description better, while for some other industries with fluid entry
and volatile demand, an endogenous market structure is more apt.

As an illustrative example, consider again the following class of inverse demand functions:
P (Q) = a − Qb, b > 0. Observe that both m̂ and n̂ are eliminated from the expression of the
optimal tariff (4.13) since these numbers can be explicitly solved by applying this specific demand
function to the free entry conditions, (4.2) and (4.4). Solving (4.2), (4.4) and (4.13) yields

t = to be added

Note the property of the optimal tariff in Proposition 4.1 – in particular a positive relationship
between t and KH – holds for this specific demand function.
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5 Conclusion

To be added
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Appendix

A Proofs for Section 3

A.1 Equivalence between Assumptions 1 and 1’

The assumption Q(P ) is logconcave implies

d
dP

[
d ln Q(P )

dP

]
=

d
dP

[
Q′(P )
Q(P )

]

=
Q(P ) ·Q′′(P )− [Q′(P )]2

[Q(P )]2
≤ 0,

which can be expressed as
Q(P )Q′′(P )

[Q′(P )]2
≤ 1. (A.1)

Differentiating P = P (Q(P )) with respect to P , we get

1 = P ′(Q(P ))Q′(P ).

Differentiating this once again with respect to P gives

0 = P ′′[Q′(P )]2 + P ′Q′′(P ).

Rewriting this equation, we get
Q′′(P )

[Q′(P )]2
= −P ′′

P ′ .

Substituting this relationship into (A.1), we find that

−QP ′′(Q)
P ′(Q)

≤ 1,

which implies P ′(Q) + QP ′′(Q) ≤ 0. ¤

A.2 Proof of Lemma 3.1

(i) Differentiating (3.5) with respect to n, rearranging and using (3.5) subsequently, we get

∂X̂

∂n
= − g(X̂)− c− t

(n + 1)g′(X̂) + X̂g′′(X̂)
=

x̂

n + 1 + ε
.

Note Q̂ = X̂ implies that ∂Q̂
∂n = ∂X̂

∂n . Since Q̂ = mq̂ and X̂ = nx̂, we get

∂q̂

∂n
=

q̂

n(n + 1 + ε)
,

∂x̂

∂n
= − (n + ε)x̂

n(n + 1 + ε)
.
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Using the expression for ∂X̂
∂n we get

∂r̂

∂n
=

∂g(X̂)
∂n

= g′(X̂)
∂X̂

∂n
=

x̂g′(X̂)
n + 1 + ε

=
x̂P ′(Q̂)(m + 1 + ε)

m(n + 1 + ε)
,

∂P̂

∂n
=

∂P (Q̂)
∂n

= P ′(Q̂)
∂Q̂

∂n
=

x̂P ′(Q̂)
n + 1 + ε

.

The results follow from noticing that P ′(Q̂) < 0, m + 1 + ε > 0 and n + 1 + ε > 0.

(ii) Differentiating (3.5) with respect to t, we get

∂X̂

∂t
=

n

g′(X̂)(n + 1 + ε)
=

mn

P ′(Q̂)(n + 1 + ε)(m + 1 + ε)
.

Note Q̂ = X̂ implies that ∂Q̂
∂t = ∂X̂

∂t . Since Q̂ = mq̂ and X̂ = nx̂, we get

∂q̂

∂t
=

n

P ′(Q̂)(m + 1 + ε)(n + 1 + ε)
,

∂x̂

∂t
=

m

P ′(Q̂)(m + 1 + ε)(n + 1 + ε)
.

Using the expression for ∂X̂
∂t we get

∂r̂

∂t
= g′(X̂)

∂X̂

∂t
=

n

n + 1 + ε
,

∂P̂

∂t
= P ′(Q̂)

∂Q̂

∂t
=

mn

(m + 1 + ε)(n + 1 + ε)
.

The results follow from noticing that P ′(X̂) < 0, n + 1 + ε > 0 and n + 1 + ε > 0.

(iii) We have that
dr∗

dt
=

dr̂

dt
− 1 = − 1 + ε

n + 1 + ε
.

The claim follows from observing that n + 1 + ε > 0.

Although we have focused on comparative statics with respect to n, it is straightforward to
examine comparative statics with respect to n. From (3.1), we have that

∂Q̂

∂m
= − P (Q̂)− r

(m + 1)P ′(Q̂) + Q̂P ′′(Q̂)
=

q̂

m + 1 + ε
.

Since Q̂ = mq̂ and X̂ = nx̂, we get

∂q̂

∂m
= − (1 + ε)q̂

m(m + 1 + ε)
,

∂x̂

∂m
=

x̂

m(m + 1 + ε)
.

Regarding the prices, note in particular that the input price r depends on m as well as X (see
(3.2)). While we apply the short-hand definition r ≡ g(X) for the short-run analysis (since we
mainly focus on comparative statics with respect to n), we need to explicitly define r ≡ g(X,m)
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when we conduct comparative statics with respect to m. Thus

∂r̂

∂m
=

∂g(X̂, m)
∂m

= gx(X̂, m)
∂X̂

∂m
+ gm(X̂, m) = 0,

∂P̂

∂m
=

∂P (Q̂)
∂m

= P ′(Q̂)
∂Q̂

∂m
=

q̂P ′(Q̂)
m + 1 + ε

,

where
gx(X, m) ≡ ∂g(X,m)

∂X
, gm(X, m) ≡ ∂g(X,m)

∂m
.

The results follow from noticing that P ′(Q̂) < 0 and m + 1 + ε > 0. ¤

A.2 Proof of Proposition 3.1

Setting dWH
dt = 0 in (3.6) and rearranging yields (3.9). Concerning the properties of the optimal

tariff t = t(n), since (i) directly follows from (3.9), we focus on (ii) below.

First we show that t is decreasing in n. Differentiating dWH
dt = 0 with respect to n gives:

dt

dn
= −

∂2WH
∂n∂t

∂2WH
∂t2

.

For the class of inverse demand functions that satisfy Assumptions 1 and 2, WH is strictly con-
cave in t so that the second-order condition is satisfied, i.e., ∂2WH

∂t2
< 0. Then it follows that

sgn
dt

dn
= sgn

∂2WH

∂n∂t
. (A.2)

Using (3.8), rewrite dWH
dt in (3.6) as

dWH

dt
=

n

m + 1 + ε
(r̂ − c− t)

∂Q̂

∂t
+

(
1− ∂r̂

∂t

)
X̂ + t

∂X̂

∂t
. (A.3)

Differentiating (A.3) with respect to n gives

∂2WH

∂n∂t
=

1
m + 1 + ε

(r̂ − c− t)
∂Q̂

∂t
< 0.

Since ∂2WH
∂n∂t < 0, (A.2) implies that dt

dn < 0. Similarly, we can show that t = t(m, n) is increasing
in m by replacing n with m in (A.2) and by differentiating (A.3) with respect to m.

Next we show for future reference that the above also holds by directly differentiating t with
respect to n and m. To show dt

dn < 0, using P ′(Q) = m
m+1+εg

′(X) from (3.3), rewrite the optimal
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tariff in (3.9) as t = −X̂g′(X̂)Φ where Φ ≡ (1+ε)(m+1+ε)−n
mn . Differentiating this t with respect to n,

dt

dn
= −

[
g′(X̂) + X̂g′′(X̂)

] dX̂

dn
Φ− X̂g′(X̂)

dΦ
dn

= −g′(X̂)(1 + ε)Φ

(
∂X̂

∂n
+

∂X̂

∂t

dt

dn

)
+ X̂g′(X̂)

(
1 + ε

n2

)
.

Substituting ∂X̂
∂n and ∂X̂

∂t from Lemma 3.1 and solving for dt
dn yields

dt

dn
= −(1 + ε)

(
−X̂g′(X̂)

n

)[
m + 2 + ε

mn + (1 + ε)(2 + ε)(m + 1 + ε)

]
.

The claim follows from noting that g′(X) < 0 and 1 + ε > 0. Following the similar steps, we get

dt

dm
=

(
−Q̂P ′(Q̂)

m

)[
n + 1 + ε

mn + (1 + ε)(2 + ε)(m + 1 + ε)

]
.

The claim follows from noting that P ′(Q) < 0. ¤

A.3 Proof of Proposition 3.2

We first show that the impact of n on ΠF is decomposed into the competition effect and tariff-
reduction effect. Differentiating ΠF = (r̂ − c− t)X̂ with respect to n,

dΠF

dn
= (r̂ − c− t)

∂X̂

∂n
+

∂r̂

∂n
X̂ − dt

dn

= −x̂g′(X̂)
∂X̂

∂n
+ nx̂g′(X̂)

∂X̂

∂n
− dt

dn

= (n− 1)x̂g′(X̂)
∂X̂

∂n
− dt

dn
.

Next we show that the size effect can dominate the competition effect. Differentiating ΠF =
(r̂ − c− t)X̂ = − X̂2g′(X̂)

n with respect to n gives

dΠF

dn
=

X̂2g′(X̂)
n2

[1− (2 + ε)δ] , (A.4)

where δ ≡ n
X̂

dX̂
dn = n

X̂

(
∂X̂
∂n + ∂X̂

∂t
dt
dn

)
. Substituting ∂X̂

∂n , ∂X̂
∂t from Lemma 3.1 and dt

dn from Proposi-
tion 3.1(ii), we get

δ =
1

n + 1 + ε

[
mn + (m + 1 + ε)(1 + ε)(2 + ε) + n(1 + ε)(m + 2 + ε)

mn + (m + 1 + ε)(1 + ε)(2 + ε)

]
.

Since X̂2g′(X̂)
n2 < 0 in (A.4), dΠF

dn > 0 ⇔ δ > 1
2+ε . Evaluating limm→∞ δ and solving the last

28



inequality for n establishes the result. ¤

B Proofs of Section 4

B.1 Proof of Lemma 4.1

Let a dot represent proportional rates of change (e.g. Q̇ ≡ Q′
Q ) and totally differentiating (4.3),

(4.2) and (4.4) respectively gives

(n + 1 + ε)Ẋ =
(

n + 1 + ε

m + 1 + ε

)
ṁ + ṅ +

mnt

(m + 1 + ε)QP ′(Q)
ṫ, (B.1)

(2 + ε)Q̇ = 2ṁ, (B.2)

(2 + ε)Ẋ =
(

1 + ε

m + 1 + ε

)
ṁ + 2ṅ, (B.3)

where KH and KF hold constant. (B.1), (B.2) and (B.3) are three equations that have three
unknowns Ẋ(= Q̇), ṁ and ṅ, which can be solved explicitly as a function of ṫ:

Ẋ =
(

4
Ω

)
mnt

QP ′(Q)
ṫ,

ṁ =
(

2(2 + ε)
Ω

)
mnt

QP ′(Q)
ṫ,

ṅ =
(

2 + ε

Ω

)(
2m + 1 + ε

m + 1 + ε

)
mnt

QP ′(Q)
ṫ,

where Ω ≡ (2m + ε)(2n + ε)− (2 + ε) > 0 for m > 1 and n > 1. Evaluated at X = X̂,m = m̂, n = n̂,
we have that

∂X̂

∂t
=

(
4
Ω̂

)
m̂n̂

P ′(Q̂)
< 0, (B.4)

∂m̂

∂t
=

(
2(2 + ε)

Ω̂

)
m̂2n̂

Q̂P ′(Q̂)
< 0, (B.5)

∂n̂

∂t
=

(
2 + ε

Ω̂

)(
(2m̂ + 1 + ε)n̂2

X̂g′(X̂)

)
< 0. (B.6)

Further, since Q̂ = X̂, Q̂ = m̂q̂ and X̂ = n̂x̂, we have ∂Q̂
∂t = m̂∂q̂

∂t + q̂ ∂m̂
∂t and ∂X̂

∂t = n̂∂x̂
∂t + x̂∂n̂

∂t , and
using (B.4), (B.5) and (B.6) yields

∂q̂

∂t
= − 2n̂ε

Ω̂P ′(Q̂)
, (B.7)

∂x̂

∂t
= −2m̂ε + (ε + 1)(ε− 2)

Ω̂gx(X̂)
, (B.8)
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which suggests that

∂q̂

∂t
R 0 ⇐⇒ ε R 0,

∂x̂

∂t
R 0 ⇐⇒ ε R ε∗,

where ε∗ ∈ (0, 1) satisfies 2m̂ε∗ + (ε∗ + 1)(ε∗− 2) = 0. Using the expressions of ∂X̂
∂t and ∂m̂

∂t in (B.4)
and (B.5), we also have that

∂P̂

∂t
= P ′(Q̂)

∂Q̂

∂t
=

4m̂n̂

Ω̂
> 0,

∂r̂

∂t
= gx(X̂, m̂)

∂X̂

∂t
+ gm(X̂, m̂)

∂m̂

∂t
=

2n̂(2m̂ + ε)
Ω̂

> 0.

Next, differentiating ẑ and P̂−r̂
r̂−c−t that are derived from (4.5) and (4.6) and using the expres-

sions of ∂X̂
∂t and ∂m̂

∂t in (B.4) and (B.5), we have that

∂ẑ

∂t
= −

(
(1 + ε)(2 + ε)

Ω̂

)
m̂k

Q̂P ′(Q̂)
> 0,

∂
(

P̂−r̂
r̂−c−t

)

∂t
=

(
(1 + ε)(2 + ε)

Ω̂

)
m̂k

X̂gx(X̂)
< 0.

Finally, using the expression of ∂r̂
∂t , it directly follows that

∂r∗

∂t
=

∂r̂

∂t
− 1 = −2m̂ε + (ε + 1)(ε− 2)

Ω̂
. (B.9)

Comparing (B.8) and (B.9) suggests that

∂r∗

∂t
= gx(X̂, m̂)

∂x̂

∂t
.

The claim that ∂r∗
∂t Q 0 ⇔ ∂x̂

∂t R 0 follows from noting that gx(X,m) < 0.

B.2 Proof of Lemma 4.2

Using a dot representation once again (e.g. Q̇ ≡ Q′
Q ) and totally differentiating (4.3), (4.2) and

(4.4) respectively gives

(n + 1 + ε)Ẋ =
(

n + 1 + ε

m + 1 + ε

)
ṁ + ṅ, (B.10)

(2 + ε)Ẋ = 2ṁ + K̇H , (B.11)

(2 + ε)Ẋ =
(

1 + ε

m + 1 + ε

)
ṁ + 2ṅ, (B.12)
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where t and KF hold constant. (B.10), (B.11) and (B.12) are the three equations that have the
three unknowns Ẋ(= Q̇), ṁ and ṅ, which can be solved explicitly as a function of K̇H :

Ẋ = −
(

2n + 1 + ε

Ω

)
K̇H ,

ṁ = −
(

(m + 1 + ε)(2n + ε)
Ω

)
K̇H ,

ṅ = −
(

n + 1 + ε

Ω

)
K̇H ,

where Ω is exactly the same as before. Evaluated at X = X̂,m = m̂, n = n̂, we have that

∂X̂

∂KH
= −

(
2n̂ + 1 + ε

Ω̂

)
X̂

KH
< 0, (B.13)

∂m̂

∂KH
= −

(
(m̂ + 1 + ε)(2n̂ + ε)

Ω̂

)
m̂

KH
< 0, (B.14)

∂n̂

∂KH
= −

(
n̂ + 1 + ε

Ω̂

)
n̂

KH
< 0. (B.15)

Further, since Q̂ = X̂, Q̂ = m̂q̂ and X̂ = n̂x̂, we have ∂Q̂
∂t = m̂∂q̂

∂t + q̂ ∂m̂
∂t and ∂X̂

∂t = n̂∂x̂
∂t + x̂∂n̂

∂t , and
using (B.13), (B.14) and (B.15) yields

∂q̂

∂KH
=

(
(m̂ + ε)(2n̂ + ε)− 1

Ω̂

)
q̂

KH
> 0,

∂x̂

∂KH
= −

(
n̂

Ω̂

)
x̂

KH
< 0.

Using the expressions of ∂X̂
∂KH

and ∂m̂
∂KH

in (B.13) and (B.14), we also have that

∂P̂

∂KH
= P ′(Q̂)

∂Q̂

∂KH
= −

(
2n̂ + 1 + ε

Ω̂

)
Q̂P ′(Q̂)

KH
> 0,

∂r̂

∂KH
= gx(X̂, m̂)

∂X̂

∂KH
+ gm(X̂, m̂)

∂m̂

∂KH
= −

(
1
Ω̂

)
X̂g′(X̂, m̂)

KH
> 0.

Next, differentiating ẑ and P̂−r̂
r̂−c−t that are derived from (4.5) and (4.6) and using the expres-

sions of ∂X̂
∂KH

and ∂m̂
∂KH

in (B.13) and (B.14), we have that

∂ẑ

∂KH
=

(
(m̂ + ε)(2n̂ + ε) + (n̂− 1)

Ω̂

)
ẑ

KH
> 0,

∂
(

P̂−r̂
r̂−c−t

)

∂KH
=

(
(m̂− 1)(n̂ + ε) + (m̂n̂− 1)

Ω̂

)
1

ẑKF
> 0.
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B.2 Proof of Proposition 4.1

Setting dWH
dt = 0 in (4.9) and rearranging yields (4.13). Note from (4.13) that

t R 0 ⇐⇒ ε R ε∗∗,

where ε∗∗ ∈ (0, 1) < ε∗ satisfies 2(m̂ + n̂)ε∗∗ + (ε∗∗ + 1)(ε∗∗ − 2) = 0. Concerning the properties of
the optimal tariff t = t(KH), since (i) directly follows from (4.13), we focus on (ii) below.

We first show that t is increasing in KH . Differentiating dWH
dt = 0 with respect to KH , we get

dt

dKH
= −

∂2WH
∂KH∂t

∂2WH
∂t2

.

For the class of inverse demand functions that satisfy Assumptions 1 and 2, WH is strictly con-
cave in t so that the second-order condition is satisfied, i.e., ∂2WH

∂t2
< 0. Then it follows that

sgn
dt

dKH
= sgn

∂2WH

∂KH∂t
. (B.16)

Further differentiating (4.9) with respect to KH gives

∂2WH

∂KH∂t
= −∂m̂

∂t
> 0.

From (B.16) and the above expression, it follows that dt
dKH

> 0.
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